
Coding Practices 1
ID: 305-BSI | Version: 10 | Date: 8/6/08 4:41:05 PM

Coding Practices
Robert C. Seacord, Software Engineering Institute [vita3]

Daniel Plakosh, Software Engineering Institute [vita4]

Copyright © 2006 Carnegie Mellon University

2006-01-04

Most software vulnerabilities are the result of small but reoccurring programming errors that could be easily
avoided if programmers learned to recognize them and understand their potential harm. In particular, the C
and C++ programming languages have proved highly susceptible to these classes of errors. This knowledge
area of the Build Security In web site describes coding practices that can be used to mitigate against these
common problems in C and C++.

Most of the documents in this knowledge area are excerpted from the CERT book Secure Coding in

C and C++5 [1], written by Robert C. Seacord with contributions from other members of the CERT
Coordination Center. The mitigation strategies included in this knowledge area deal primarily with
vulnerabilities resulting from programming errors in string manipulation, integer operations, and dynamic
memory management. For a more complete description of common programming errors and the resulting

vulnerabilities, please see Secure Coding in C and C++6.

Secure coding requires an understanding of common programming errors that lead to software vulnerabilities
and the knowledge and use of alternative approaches that are less error prone. Secure coding can also benefit
from the proper use of software development tools, including compilers. Compilers typically have options
that allow increased or specific diagnostics to be performed on code during compilation. Resolving these
warnings (by correcting the problem or determining that the warning is superfluous) can improve the security
of your deployed software system. Compilers can also provide options that influence runtime settings,
such as the /GS flag in Microsoft Visual Studio. Understanding available compiler options and making
informed decisions about which options to use and which to omit can help eliminate vulnerabilities and
mitigate against runtime exploitation of undiscovered or unresolved vulnerabilities. An example of the use

of compiler checks to mitigate against integer vulnerabilities is described in Compiler Checks7. Examples
of using other static and dynamic analysis tools to discover and mitigate vulnerabilities are described in

Runtime Analysis Tools8 and Heap Integrity Detection9.

Mitigation strategies are described, including security, performance, availability, ease of use, and other
known quality attributes. We do not attempt to describe the conditions under which one mitigation strategy
is preferred to another. Instead, we assume that you (the customer of the information) know what your
requirements and constraints are and can make an appropriate selection based on your analysis of this
information and the information contained in the referenced resources.

String Manipulation
• C++ std::string11

• fgets() and gets_s()12

• memcpy_s() and memmove_s()13

• Runtime Protection14

• SafeStr15

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html (Seacord, Robert C.)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)
5. http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
6. http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
7. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/278-BSI.html (Compiler Checks)
8. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/311-BSI.html (Runtime Analysis Tools)
9. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/302-BSI.html (Heap Integrity Detection)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/278-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/311-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/302-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/295-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/300-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/303-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/310-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html

Coding Practices 2
ID: 305-BSI | Version: 10 | Date: 8/6/08 4:41:05 PM

• strcpy_s() and strcat_s()16

• strcpy() and strcat()17

• strlpy() and strlcat()18

• strncpy_s() and strncat_s()19

• strncpy() and strncat()20

• Strsafe.h21

• Vstr22

Dynamic Memory Management
• Consistent Memory Management Conventions24

• Guard Pages25

• Heap Integrity Detection26

• Null Pointers27

• OpenBSD28

• Phkmalloc29

• Randomization30

• Runtime Analysis Tools31

• Windows XP SP232

Integers
• Arbitrary Precision Arithmetic34

• Compiler Checks35

• Range Checking36

• Safe Integer Operations37

• Strong Typing38

Acknowledgments
Documents in this section were authored by Robert C. Seacord and Daniel Plakosh. Documents were
reviewed by Shawn Hernan, Michael Howard, and Steve Lipner of Microsoft, Jeffrey Voas of SAIC, and
Gary McGraw of Cigital. Editing was performed by Pamela Curtis of the SEI.

References
[1] Seacord, Robert C. Secure Coding in C and C++. Boston, MA: Addison Wesley Professional, 2005
(ISBN 0321335724).

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/314-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/313-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/315-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/317-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/316-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/272-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/273-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/476-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/301-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/302-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/304-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/269-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/306-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/307-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/311-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/276-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/277-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/278-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/308-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/318-BSI.html

